Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 969
Filtrar
1.
Proc Biol Sci ; 291(2018): 20232937, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471545

RESUMO

Collembola is a highly diverse and abundant group of soil arthropods with chromosome numbers ranging from 5 to 11. Previous karyotype studies indicated that the Tomoceridae family possesses an exceptionally long chromosome. To better understand chromosome size evolution in Collembola, we obtained a chromosome-level genome of Yoshiicerus persimilis with a size of 334.44 Mb and BUSCO completeness of 97.0% (n = 1013). Both genomes of Y. persimilis and Tomocerus qinae (recently published) have an exceptionally large chromosome (ElChr greater than 100 Mb), accounting for nearly one-third of the genome. Comparative genomic analyses suggest that chromosomal elongation occurred independently in the two species approximately 10 million years ago, rather than in the ancestor of the Tomoceridae family. The ElChr elongation was caused by large tandem and segmental duplications, as well as transposon proliferation, with genes in these regions experiencing weaker purifying selection (higher dN/dS) than conserved regions. Moreover, inter-genomic synteny analyses indicated that chromosomal fission/fusion events played a crucial role in the evolution of chromosome numbers (ranging from 5 to 7) within Entomobryomorpha. This study provides a valuable resource for investigating the chromosome evolution of Collembola.


Assuntos
Artrópodes , Genoma , Animais , Artrópodes/genética , Genômica , Sintenia , Cariótipo , Evolução Molecular
2.
Zootaxa ; 5419(4): 545-562, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38480309

RESUMO

Thailand hosts a very rich but underexplored giant pill-millipede (Sphaerotheriida) fauna, with 11 of its 13 species described in the last three years. Currently, all known Thai giant pill-millipedes belong to the genera Zephronia Gray, 1832 (nine species) and Sphaerobelum Verhoeff, 1924 (four species). Here we describe the first two species of the genus Prionobelum Verhoeff, 1924 (previously restricted to Vietnam and China), Prionobelum inthanonense n. sp. and P. naevium n. sp. from Thailand. The species occur at Thailands highest mountain (2500 m) Doi Inthanon and the lowland rainforests at Bang Lang National Park touching the border with Malaysia. Both species are described integratively, utilizing light microscopy, scanning electron microscopy as well as DNA barcoding. Both new species of Prionobelum differ from other Zephroniidae species, as well as from one another, by more than 20% p-distance in the COI barcoding gene suggesting that potential closer related species are still awaiting discovery.


Assuntos
Artrópodes , Animais , Tailândia , Artrópodes/genética , Microscopia Eletrônica de Varredura
3.
Sci Rep ; 14(1): 7541, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555348

RESUMO

Diplopoda is one of the most diverse and important groups of soil arthropods, but little research has been done on their phylogenetic relationship and evolution. Here, we sequenced and annotated the complete mitochondrial genomes of Spirobolus grahami. The total mitogenome of S. grahami was typical circular, double-stranded molecules, with 14,875 bp in length, including 13 protein-coding genes, 22 tRNAs, two rRNAs, and one control region. Base composition analysis suggested that the mitochondrial sequences were biased toward A and T, with A + T content of 58.68%. The mitogenomes of S. grahami exhibited negative AT and positive GC skews. Most of the 13 PCGs had ATN as the start codon, except COX1 start with CGA, and most PCGs ended with the T stop codon. The dN/dS values for most PCGs were lower than 1, suggesting that purifying selection was likely the main driver of mitochondrial PCG evolution. Phylogenetic analyses based on 13 PCGs using BI and ML methods support the classification of genus Spirobolus and Tropostreptus. Glomeridesmus spelaeus is distantly related to the other Diplopoda species.


Assuntos
Artrópodes , Genoma Mitocondrial , Mariposas , Animais , Filogenia , Artrópodes/genética , Mariposas/genética , Sequência de Bases
4.
New Phytol ; 242(3): 1307-1323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488269

RESUMO

Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition. We analyzed our surveys with traditional single-trait genome-wide association analysis (GWAS), multitrait GWAS, and functional networks built from a diverse set of plant phenotypes. Plant genotype was influential in structuring arthropod community composition among several garden sites. Candidate genes important for higher level organization of arthropod communities had broadly applicable functions, such as terpenoid biosynthesis and production of dsRNA binding proteins and protein kinases, which may be capable of targeting multiple arthropod species. We have demonstrated the ability to detect, in an uncontrolled environment, individual genes that are associated with the community assemblage of arthropods on a host plant, further enhancing our understanding of genetic mechanisms that impact ecosystem structure.


Assuntos
Artrópodes , Populus , Animais , Artrópodes/genética , Ecossistema , Populus/genética , Estudo de Associação Genômica Ampla , Genótipo , Variação Genética
5.
Genes (Basel) ; 15(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397243

RESUMO

This study presents the complete mitochondrial genome (mitogenome) of Litostrophus scaber, which is the first mitogenome of the genus Litostrophus. The mitogenome is a circular molecule with a length of 15,081 bp. The proportion of adenine and thymine (A + T) was 69.25%. The gene ND4L used TGA as the initiation codon, while the other PCGs utilized ATN (A, T, G, C) as the initiation codons. More than half of the PCGs used T as an incomplete termination codon. The transcription direction of the L. scaber mitogenome matched Spirobolus bungii, in contrast to most millipedes. Novel rearrangements were found in the L. scaber mitogenome: trnQ -trnC and trnL1- trnP underwent short-distance translocations and the gene block rrnS-rrnL-ND1 moved to a position between ND4 and ND5, resulting in the formation of a novel gene order. The phylogenetic analysis showed that L. scaber is most closely related to S. bungii, followed by Narceus magnum. These findings enhance our understanding of the rearrangement and evolution of Diplopoda mitogenomes.


Assuntos
Artrópodes , Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Filogenia , Composição de Bases , Artrópodes/genética , Códon de Iniciação
6.
Artigo em Inglês | MEDLINE | ID: mdl-38266530

RESUMO

Triacylglycerol (TAG) is crucial in animal energy storage and membrane biogenesis. The conversion of diacylglycerol (DAG) to triacylglycerol (TAG) is catalyzed by diacylglycerol acyltransferase enzymes (DGATs), which are encoded by genes belonging to two distinct gene families. Although arthropods are known to possess DGATs activities and utilize the glycerol-3-phosphate pathway and MAG pathway for TAG biosynthesis, the sequence characterization and evolutionary history of DGATs in arthropods remains unclear. This study aimed to comparatively evaluate genomic analyses of DGATs in 13 arthropod species and 14 outgroup species. We found that arthropods lack SOAT2 genes within the DGAT1 family, while DGAT2, MOGAT3, AWAT1, and AWAT2 were absent from in DGAT2 family. Gene structure and phylogenetic analyses revealed that DGAT1 and DGAT2 genes come from different gene families. The expression patterns of these genes were further analyzed in crustaceans, demonstrating the importance of DGAT1 in TAG biosynthesis. Additionally, we identified the DGAT1 gene in Swimming crab (P. trituberculatus) undergoes a mutually exclusive alternative splicing event in the molt stages. Our newly determined DGAT inventory data provide a more complete scenario and insights into the evolutionary dynamics and functional diversification of DGATs in arthropods.


Assuntos
Artrópodes , Diacilglicerol O-Aciltransferase , Animais , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Filogenia , Artrópodes/genética , Artrópodes/metabolismo , Triglicerídeos
7.
Sci Rep ; 14(1): 503, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177280

RESUMO

It is often thought that the primitive is simpler, and that the complex is generated from the simple by some process of self-assembly or self-organization, which ultimately consists of the spontaneous and fortuitous collision of elementary units. This idea is included in the Darwinian theory of evolution, to which is added the competitive mechanism of natural selection. To test this view, we studied the early evolution of arthropods. Twelve groups of arthropods belonging to the Burgess Shale, Orsten Lagerstätte, and extant primitive groups were selected, their external morphology abstracted and codified in the language of network theory. The analysis of these networks through different network measures (network parameters, topological descriptors, complexity measures) was used to carry out a Principal Component Analysis (PCA) and a Hierarchical Cluster Analysis (HCA), which allowed us to obtain an evolutionary tree with distinctive/novel features. The analysis of centrality measures revealed that these measures decreased throughout the evolutionary process, and led to the creation of the concept of evolutionary developmental potential. This potential, which measures the capacity of a morphological unit to generate changes in its surroundings, is concomitantly reduced throughout the evolutionary process, and demonstrates that the primitive is not simple but has a potential that unfolds during this process. This means for us the first empirical evolutionary evidence of our theory of evolution as a process of unfolding.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Artrópodes/anatomia & histologia , Evolução Biológica
8.
Insect Biochem Mol Biol ; 165: 104068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171463

RESUMO

The genome editing technique CRISPR/Cas9 has led to major advancements in many research fields and this state-of-the-art tool has proven its use in genetic studies for various arthropods. However, most transformation protocols rely on microinjection of CRISPR/Cas9 components into embryos, a method which is challenging for many species. Alternatively, injections can be performed on adult females, but transformation efficiencies can be very low as was shown for the two-spotted spider mite, Tetranychus urticae, a minute but important chelicerate pest on many crops. In this study, we explored different CRISPR/Cas9 formulations to optimize a maternal injection protocol for T. urticae. We observed a strong synergy between branched amphipathic peptide capsules and saponins, resulting in a significant increase of CRISPR/Cas9 knock-out efficiency, exceeding 20%. This CRISPR/Cas9 formulation, termed SYNCAS, was used to knock-out different T. urticae genes - phytoene desaturase, CYP384A1 and Antennapedia - but also allowed to develop a co-CRISPR strategy and facilitated the generation of T. urticae knock-in mutants. In addition, SYNCAS was successfully applied to knock-out white and white-like genes in the western flower thrips, Frankliniella occidentalis. The SYNCAS method allows routine genome editing in these species and can be a game changer for genetic research in other hard to transform arthropods.


Assuntos
Artrópodes , Tetranychidae , Animais , Sistemas CRISPR-Cas , Artrópodes/genética , Edição de Genes/métodos , Tetranychidae/genética
9.
Microbiome ; 12(1): 16, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287457

RESUMO

BACKGROUND: Many arthropods rely on their gut microbiome to digest plant material, which is often low in nitrogen but high in complex polysaccharides. Detritivores, such as millipedes, live on a particularly poor diet, but the identity and nutritional contribution of their microbiome are largely unknown. In this study, the hindgut microbiota of the tropical millipede Epibolus pulchripes (large, methane emitting) and the temperate millipede Glomeris connexa (small, non-methane emitting), fed on an identical diet, were studied using comparative metagenomics and metatranscriptomics. RESULTS: The results showed that the microbial load in E. pulchripes is much higher and more diverse than in G. connexa. The microbial communities of the two species differed significantly, with Bacteroidota dominating the hindguts of E. pulchripes and Proteobacteria (Pseudomonadota) in G. connexa. Despite equal sequencing effort, de novo assembly and binning recovered 282 metagenome-assembled genomes (MAGs) from E. pulchripes and 33 from G. connexa, including 90 novel bacterial taxa (81 in E. pulchripes and 9 in G. connexa). However, despite this taxonomic divergence, most of the functions, including carbohydrate hydrolysis, sulfate reduction, and nitrogen cycling, were common to the two species. Members of the Bacteroidota (Bacteroidetes) were the primary agents of complex carbon degradation in E. pulchripes, while members of Proteobacteria dominated in G. connexa. Members of Desulfobacterota were the potential sulfate-reducing bacteria in E. pulchripes. The capacity for dissimilatory nitrate reduction was found in Actinobacteriota (E. pulchripes) and Proteobacteria (both species), but only Proteobacteria possessed the capacity for denitrification (both species). In contrast, some functions were only found in E. pulchripes. These include reductive acetogenesis, found in members of Desulfobacterota and Firmicutes (Bacillota) in E. pulchripes. Also, diazotrophs were only found in E. pulchripes, with a few members of the Firmicutes and Proteobacteria expressing the nifH gene. Interestingly, fungal-cell-wall-degrading glycoside hydrolases (GHs) were among the most abundant carbohydrate-active enzymes (CAZymes) expressed in both millipede species, suggesting that fungal biomass plays an important role in the millipede diet. CONCLUSIONS: Overall, these results provide detailed insights into the genomic capabilities of the microbial community in the hindgut of millipedes and shed light on the ecophysiology of these essential detritivores. Video Abstract.


Assuntos
Artrópodes , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Filogenia , Bactérias , Artrópodes/genética , Metagenoma , Bacteroidetes/genética , Proteobactérias/genética , Metagenômica , Carboidratos , Nitrogênio/metabolismo , Sulfatos/metabolismo
10.
Mol Ecol Resour ; 24(2): e13900, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010630

RESUMO

Our limited knowledge about the ecological drivers of global arthropod decline highlights the urgent need for more effective biodiversity monitoring approaches. Monitoring of arthropods is commonly performed using passive trapping devices, which reliably recover diverse communities, but provide little ecological information on the sampled taxa. Especially the manifold interactions of arthropods with plants are barely understood. A promising strategy to overcome this shortfall is environmental DNA (eDNA) metabarcoding from plant material on which arthropods leave DNA traces through direct or indirect interactions. However, the accuracy of this approach has not been sufficiently tested. In four experiments, we exhaustively test the comparative performance of plant-derived eDNA from surface washes of plants and homogenized plant material against traditional monitoring approaches. We show that the recovered communities of plant-derived eDNA and traditional approaches only partly overlap, with eDNA recovering various additional taxa. This suggests eDNA as a useful complementary tool to traditional monitoring. Despite the differences in recovered taxa, estimates of community α- and ß-diversity between both approaches are well correlated, highlighting the utility of eDNA as a broad scale tool for community monitoring. Last, eDNA outperforms traditional approaches in the recovery of plant-specific arthropod communities. Unlike traditional monitoring, eDNA revealed fine-scale community differentiation between individual plants and even within plant compartments. Especially specialized herbivores are better recovered with eDNA. Our results highlight the value of plant-derived eDNA analysis for large-scale biodiversity assessments that include information about community-level interactions.


Assuntos
Artrópodes , DNA Ambiental , Animais , Artrópodes/genética , DNA de Plantas/genética , Código de Barras de DNA Taxonômico/métodos , Plantas/genética , Biodiversidade , Monitoramento Ambiental/métodos , Ecossistema
11.
Mol Phylogenet Evol ; 192: 107986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142794

RESUMO

Chemoreception is critical for the survival and reproduction of animals. Except for a reduced group of insects and chelicerates, the molecular identity of chemosensory proteins is poorly understood in invertebrates. Gastropoda is the extant mollusk class with the greatest species richness, including marine, freshwater, and terrestrial lineages, and likely, highly diverse chemoreception systems. Here, we performed a comprehensive comparative genome analysis taking advantage of the chromosome-level information of two Gastropoda species, one of which belongs to a lineage that underwent a whole genome duplication event. We identified thousands of previously uncharacterized chemosensory-related genes, the majority of them encoding G protein-coupled receptors (GPCR), mostly organized into clusters distributed across all chromosomes. We also detected gene families encoding degenerin epithelial sodium channels (DEG-ENaC), ionotropic receptors (IR), sensory neuron membrane proteins (SNMP), Niemann-Pick type C2 (NPC2) proteins, and lipocalins, although with a lower number of members. Our phylogenetic analysis of the GPCR gene family across protostomes revealed: (i) remarkable gene family expansions in Gastropoda; (ii) clades including members from all protostomes; and (iii) species-specific clades with a substantial number of receptors. For the first time, we provide new and valuable knowledge into the evolution of the chemosensory gene families in invertebrates other than arthropods.


Assuntos
Artrópodes , Gastrópodes , Animais , Gastrópodes/genética , Filogenia , Artrópodes/genética , Genoma/genética , Genômica
12.
Nat Commun ; 14(1): 7264, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945658

RESUMO

Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.


Assuntos
Artrópodes , Hemípteros , Animais , Artrópodes/genética , Hemípteros/genética , Retroviridae
13.
Dev Genes Evol ; 233(2): 59-76, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982820

RESUMO

Current sequencing technology allows for the relatively affordable generation of highly contiguous genomes. Technological advances have made it possible for researchers to investigate the consequences of diverse sorts of genomic variants, such as gene gain and loss. With the extraordinary number of high-quality genomes now available, we take stock of how these genomic variants impact phenotypic evolution. We take care to point out that the identification of genomic variants of interest is only the first step in understanding their impact. Painstaking lab or fieldwork is still required to establish causal relationships between genomic variants and phenotypic evolution. We focus mostly on arthropod research, as this phylum has an impressive degree of phenotypic diversity and is also the subject of much evolutionary genetics research. This article is intended to both highlight recent advances in the field and also to be a primer for learning about evolutionary genetics and genomics.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Genoma , Genômica , Sequência de Bases , Evolução Molecular , Filogenia
14.
Integr Comp Biol ; 63(6): 1550-1563, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37742320

RESUMO

In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control's main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.


Assuntos
Artrópodes , Sistemas CRISPR-Cas , Feminino , Animais , Artrópodes/genética , Ovário , Mosquitos Vetores , Células Germinativas
15.
Insect Biochem Mol Biol ; 162: 104012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743031

RESUMO

The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.


Assuntos
Artrópodes , Isópodes , Receptores Odorantes , Animais , Feromônios/metabolismo , Isópodes/genética , Isópodes/metabolismo , Insetos/metabolismo , Transcriptoma , Olfato/genética , Proteínas de Insetos/metabolismo , Artrópodes/genética , Receptores Odorantes/metabolismo , Antenas de Artrópodes/metabolismo , Filogenia , Perfilação da Expressão Gênica
16.
PLoS One ; 18(8): e0290173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585425

RESUMO

Arthropods account for a large proportion of animal biomass and diversity in terrestrial systems, making them crucial organisms in our environments. However, still too little is known about the highly abundant and megadiverse groups that often make up the bulk of collected samples, especially in the tropics. With molecular identification techniques ever more evolving, analysis of arthropod communities has accelerated. In our study, which was conducted within the Global Malaise trap Program (GMP) framework, we operated two closely placed Malaise traps in Padang, Sumatra, for three months. We analyzed the samples by DNA barcoding and sequenced a total of more than 70,000 insect specimens. For sequence clustering, we applied three different delimitation techniques, namely RESL, ASAP, and SpeciesIdentifier, which gave similar results. Despite our (very) limited sampling in time and space, our efforts recovered more than 10,000 BINs, of which the majority are associated with "dark taxa". Further analysis indicates a drastic undersampling of both sampling sites, meaning that the true arthropod diversity at our sampling sites is even higher. Regardless of the close proximity of both Malaise traps (< 360 m), we discovered significantly distinct communities.


Assuntos
Artrópodes , Biodiversidade , Animais , Código de Barras de DNA Taxonômico/métodos , Artrópodes/genética , DNA/genética , Biomassa
17.
Sci Data ; 10(1): 541, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587117

RESUMO

The Entomobryoidea, the largest superfamily of Collembola, encompasses over 2,000 species in the world. However, the lack of high-quality genomes hinders our understanding of the evolution and ecology of this group. This study presents a chromosome-level genome of Entomobrya proxima by combining PacBio long reads, Illumina short reads, and Hi-C data. The genome has a size of 362.37 Mb, with a scaffold N50 size of 57.67 Mb, and 97.12% (351.95 Mb) of the assembly is located on six chromosomes. The BUSCO analysis of our assembly indicates a completeness of 96.1% (n = 1,013), including 946 (93.4%) single-copy BUSCOs and 27 (2.7%) duplicated BUSCOs. We identified that the genome contains 22.16% (80.06 Mb) repeat elements and 20,988 predicted protein-coding genes. Gene family evolution analysis of E. proxima identified 177 gene families that underwent significant expansions, which were primarily associated with detoxification and metabolism. Moreover, our inter-genomic synteny analysis showed strong chromosomal synteny between E. proxima and Sinella curviseta. Our study provides valuable genomic information for comprehending the evolution and ecology of Collembola.


Assuntos
Artrópodes , Genoma , Animais , Artrópodes/genética , Ecologia , Genômica
18.
BMC Genomics ; 24(1): 436, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537567

RESUMO

BACKGROUND: Arthropods are the largest group in the animal kingdom and are morphologically characterized by heterorhythmic segments. Brachyuran decapod crustaceans undergo brachyurization metamorphosis in the early developmental process, characterized by a reduced abdomen that is folded beneath the cephalothorax and inserted between the pereiopods or in a special cavity. As the main cause of major alterations in the evolution of animal body plans, Hox genes encode transcription factors and are involved in bilaterian anterior-posterior axis patterning. RESULTS: We found eight Hox genes (labial, proboscipedia, Deformed, zerknüllt, Sex combs reduced, Antennapedia, Ultrabithorax, fushi tarazu, abdominal-A and Abdominal-B) in Eriocheir sinensis. The phylogenetic topology of 13 arthropod Hox genes was closely related to traditional taxonomic groupings. Genome collinearity analysis was performed using genomic data and chromosomal location data of E. sinensis and Portunus trituratus. We found that their chromosomes were highly collinear, and there was a corresponding collinear relationship between the three Hox genes (lab, ftz and Abd-B). The mRNA expression levels of Scr and Antp fluctuated significantly in different developmental stages of E. sinensis, especially in the brachyurization stages. Evolutionary analysis indicated the presence of positively selected sites in Ubx. CONCLUSIONS: In this study, we used genome-wide analysis to identify and analyze all members of the Hox genes in E. sinensis. Our data will contribute to a better understanding of Hox genes in E. sinensis and provide useful molecular evolutionary information for further investigation on their roles in the brachyurization of crabs.


Assuntos
Artrópodes , Genes Homeobox , Animais , Filogenia , Sequência de Aminoácidos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Artrópodes/genética , RNA Mensageiro/genética , Regulação da Expressão Gênica no Desenvolvimento
19.
Genes (Basel) ; 14(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37510284

RESUMO

Diverse Tc1/mariner elements with the DD37E signature have been detected. However, their evolutionary relationship and profiles are largely unknown. Using bioinformatics methods, we defined the evolution profile of a Tc1/Mariner family, which harbors the catalytic domain with the DD37E signature, and renamed it DD37E/Mosquito (MS). MS transposons form a separate monophyletic clade in the phylogenetic tree, distinct from the other two groups of elements with the DD37E signature, DD37E/L18 and DD37E/TRT (transposon related to Tc1), and represent a very different taxonomic distribution from that of DD37E/TRT. MS is only detected in invertebrate and is mostly present in Arthropoda, as well as in Cnidaria, Ctenophora, Mollusca, Nematoda, and Platyhelminthes, with a total length of about 1.3 kb, containing an open reading frame (ORF) encoding about 340 amino acids transposases, with a conserved DD37E catalytic domain. The terminal inverted repeat (TIR) lengths range from 19 bp to 203 bp, and the target site duplication (TSD) is TA. We also identified few occurrences of MS horizontal transfers (HT) across lineages of diptera. In this paper, the distribution characteristics, structural characteristics, phylogenetic evolution, and horizontal transfer of the MS family are fully analyzed, which is conducive to supplementing and improving the Tc1/Mariner superfamily and excavating active transposons.


Assuntos
Elementos de DNA Transponíveis , Animais , Elementos de DNA Transponíveis/genética , Filogenia , Artrópodes/genética , Cnidários/genética , Ctenóforos/genética , Moluscos/genética , Nematoides/genética , Platelmintos/genética
20.
Dev Genes Evol ; 233(2): 107-121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37495828

RESUMO

Spiders represent an evolutionary successful group of chelicerate arthropods. The body of spiders is subdivided into two regions (tagmata). The anterior tagma, the prosoma, bears the head appendages and four pairs of walking legs. The segments of the posterior tagma, the opisthosoma, either lost their appendages during the course of evolution or their appendages were substantially modified to fulfill new tasks such as reproduction, gas exchange, and silk production. Previous work has shown that the homeotic Hox genes are involved in shaping the posterior appendages of spiders. In this paper, we investigate the expression of the posterior Hox genes in a tarantula that possesses some key differences of posterior appendages compared to true spiders, such as the lack of the anterior pair of spinnerets and a second set of book lungs instead of trachea. Based on the observed differences in posterior Hox gene expression in true spiders and tarantulas, we argue that subtle changes in the Hox gene expression of the Hox genes abdA and AbdB are possibly responsible for at least some of the morphological differences seen in true spiders versus tarantulas.


Assuntos
Artrópodes , Aranhas , Animais , Aranhas/genética , Aranhas/anatomia & histologia , Genes Homeobox , Artrópodes/genética , Regulação da Expressão Gênica no Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...